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Abstract In this paper we propose the problem of finding the cyclic sequence which
best represents a set of cyclic sequences. Given a set of elements and a precedence cost
matrix we look for the cyclic sequence of the elements which is at minimum distance
from all the ranks when the permutation metric distance is the Kendall Tau distance.
In other words, the problem consists of finding a robust cyclic rank with respect to
a set of elements. This problem originates from the Rank Aggregation Problem for
combining different linear ranks of elements. Next, we also introduce the problem of
finding the cyclic sequence with minimum expected cost with respect to a probability
measure based on dissimilarity between cyclic sequences on the Kendall Tau metric.
Finally, we establish certain relationships among some classical problems and the new
problems that we have proposed.

Keywords Linear ordering problem · Rank aggregation problem

1 Introduction

There is a vast number of combinatorial problems which look for the best permutation
of a set of elements assuming a certain criterion. If the optimal permutation is the one
which minimizes the cost of the path induced by the permutation we have the Linear
Ordering Problem (LOP) [17–19] and when the optimal permutation is the closest to a
given set of permutations and the distances among permutations are measured with the
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Kendall Tau distance, the problem results in the Rank Aggregation Problem (RAP),
also known as the Kemeny problem. The RAP is a classic problem in combinatorial
optimization: some papers in the literature concentrate on giving good algorithms for
solving it [1,3,10,11,21,22], some concentrate on giving properties of the solution
[4,9] and some others compare different strategies for ranking [2,12]. LOP and RAP
are closely related and it can be shown that the RAP reduces to the LOP under a
suitable transformation. In this paper we propose a variation of these problems when
the set of elements must be ranked in a cyclic way. First of all, we start by pointing out
three applications of this novel rank aggregation in cyclic sequences. In the same way
that scheduling with preferences is an application of the RAP [17], cyclic scheduling
with preferences is an application of rank aggregation in cyclic sequences. The cyclic
scheduling problem is the scheduling problem that appearswhen the set of tasks is to be
repeated formally speaking infinity many times. A second application of this problem
is the position of the slices in a pie chart when there exists a matrix of preferences,
even if any permutation represents the same fractions, only some of them respect
the aggregation of preferences [8]. The third application is to aggregate preferences in
routing problems. This application is related to the so-called Target Visitation Problem
which consists of finding a tour which maximizes the difference of the sum of the met
preferences and the total travel costs [15]. Therefore, all the applications of the Target
Visitation Problem, as for example environment assessment, combat search, rescue
and disaster relief [14] and applications to the delivery of emergency supplies [7] can
also be shown as examples of application of the Rank Aggregation Problem in cyclic
sequences.

In this paper we introduce the Rank Aggregation Problem in Cyclic sequences
(RAPC) and a variant of it, that we call the Permutated Asymmetric Traveling Sales-
man Problem (ρATSP). On the one hand, the Rank Aggregation Problem in Cyclic
sequences consists in finding the cyclic sequence that is at minimum distance from a
given set of cyclic sequences assuming that distances are measured with the Kendall
Tau metric. On the other hand, the Permutated Asymmetric Traveling Salesman Prob-
lem consists in finding the cyclic sequence with smallest expected cost with respect
to a pre-specified probability distribution. In this paper we also show that an optimal
solution of the ρATSP is an optimal solution of RAPC considered in reverse order.

The main contribution of this paper is to provide a compact formulation for the
Rank Aggregation Problem in cyclic sequences and the proof of equivalence of the
Rank Aggregation Problem in cyclic sequences and the Linear Ordering Problem. The
paper is organized as follows. In Sects. 2 and 3 we introduce the RAPC and the ρATSP
respectively and we propose compact formulations for them. Section 4 is devoted to
establish the relationships among the LOP, RAP, RAPC and ρATSP.

2 The rank aggregation problem in cyclic sequences

Let G = (V, A) be a complete directed graph with arc weight ci j for each pair
i, j ∈ V and V = {1, . . . , n} with n ≥ 3. Let S be the full set of permutations in V
and σ a permutation. We can define the distance d(σ1, σ2) like the number or pairwise
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Rank aggregation in cyclic sequences 669

Table 1 Kendall Tau distance
matrix, �3!×3!

123 132 213 231 312 321

123 0 1 1 2 2 3

132 1 0 2 3 1 2

213 1 2 0 1 3 2

231 2 3 1 0 2 1

312 2 1 3 2 0 1

321 3 2 2 1 1 0

disagreements between the two permutations σ1 and σ2. This distance is known as
Kendall Tau distance.

Definition 1 The Kendall Tau distance between two permutations σ1 and σ2 is given
by:

d(σ1, σ2) = |{(i, j) : i < j, ((σ1(i) < σ1( j) ∧ σ2(i) > σ2( j))

∨(σ1(i) > σ1( j) ∧ σ2(i) < σ2( j)))}|

where, σ1(i) and σ2(i) are the positions of the element i in σ1 and σ2 respectively.

The Kendall Tau distance is a permutations metric that counts the number of pair-
wise disagreements between two ranking lists. The larger the distance is, the more
different the permutations are. For instance, if we had three elements, the distance to
the permutation 123 from 132, 231 and 321 will be 1, 2 and 3 respectively. Kendall
Tau distances between all the permutations of three elements are shown in Table 1. In
the following, we call �n!×n! = (δrs) with δrs = d(r, s) ∀r, s ∈ S the Kendall Tau
distance matrix for the permutations of n elements.

We can define a cyclic ordering of a finite set V to be a permutation σ ∈ S with
exactly one orbit. Cyclic orderings split the set of linear orderings S into a set of
equivalence classes. Similar to Definition 1, we can define the Kendall Tau distance
between two cyclic sequences as the Kendall Tau distance between the representative
cyclic sequences of each equivalent class. We denote by R the set of equivalence
class induced by S, when S is the set of all permutations in V (any ρ ∈ R represents
a hamiltonian tour in V ). We denote by C(r) the aggregation weights of the cyclic
sequence r ∈ R and we denote by ρ ∈ R one element in R.

Based on the above elements, we define the Rank Aggregation problem in cyclic
sequences as the problem of finding the cyclic sequence closest to all cyclic sequences
in the complete directed graph G = (V, A):

(RAPC) argmin
ρ

∑
r∈R C(r)d(ρ, r). (1)

In order to exactly solve the RAPC we propose a compact formulation. Let us
introduce the following set of binary variables, called z-family:
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zi j =
{
1 if j is visited before i
0 otherwise

for all i, j ∈ V i �= j.
If V = {1, 2, 3, 4}, the cyclic sequences 1234 and 1342 will be associated to the

solutions

zi j =

⎛

⎜
⎜
⎝

− 0 0 0
1 − 0 0
1 1 − 0
1 1 1 −

⎞

⎟
⎟
⎠ and zi j =

⎛

⎜
⎜
⎝

− 0 0 0
1 − 1 1
1 0 − 0
1 0 1 −

⎞

⎟
⎟
⎠ .

respectively.
The first contribution of this paper gives an explicit expression for the objective

function of RAPC. Later, we shall substantially simplify it by using properties of the
z-variables.

Proposition 1 The objective function of RAPC is

∑

i, j∈V−{1}:i �= j

ci j

⎛

⎝(n − 2)!zi j +
∑

k,t∈V−{i, j,1}:k<t

(n − 2)!
2

(zkt + ztk)

+
∑

k∈V :k �=i, j,1

(n − 2)!
2

(zki + zik + z jk + zk j )

⎞

⎠

+
∑

j∈V−{1}
c1 j

⎛

⎝(n − 2)!
∑

k∈V−{1, j}
z jk +

∑

k,t∈V−{ j,1}:k<t

(n − 2)!
2

(zkt + ztk)

⎞

⎠

+
∑

j∈V−{1}
c j1

⎛

⎝(n − 2)!
∑

k∈V−{1, j}
zk j +

∑

k,t∈V−{ j,1}:k<t

(n − 2)!
2

(zkt + ztk)

⎞

⎠ (2)

The idea of the proof is to compute the number of times that each cost ci j appears
in the objective function. For instance, consider a problem with n = 5 in which the
cheapest cyclic sequence is 12345. Cost c53 appears in permutations 12453, 12534,
14253, 14532, 15324 and 15342 which have disorders 2, 2, 3, 5, 4, 5. Thus, the
coefficient of c53 in the objective function is 21 (2 + 2 + 3 + 5 + 4 + 5). And also
21 = 6z53 + 3(z32 + z42 + z52 + z43 + z54), i.e., six times we add the disorder of
visiting node 5 before node 3, three times we add the disorder of visiting node 3 before
node 2 and so on.

Proof of Proposition 1 Since all the cyclic sequences start at node 1, we distinguish
between ci j with i, j ∈ V \{1}, i �= j and c1 j or c j1. We say that an ordered set of
two nodes {i, j} incurs in disorder if j is visited before i in the solution. Recall that
the number of nodes is be greater than 2, i.e., n ≥ 3.
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Rank aggregation in cyclic sequences 671

We distinguish three cases:

• i, j ∈ V \{1}, i �= j. ci j is added to the objective function when the arc (i, j)
belongs to the cyclic sequence and either {i, j} incurs itself in disorder or any
of the sets {k, i}, {i, k}, {k, j}, { j, k} for k ∈ V − {1, i, j} or {k, t}, {t, k} for
k, t ∈ V − {1, i, j}, k �= t incurs in disorder. Therefore, we need to compute:
(i) the number of permutations to which the arc (i, j) belongs to; (ii) how many
permutations among them visit k before and after i and before and after j for all
k ∈ V − {1, i, j}; (iii) how many permutations among them visit k before t and
viceversa with k, t ∈ V − {1, i, j}, k �= t.

– The arc (i, j) belongs to {n − 2}! permutations starting at 1: there are n − 2
positions for i if it must be followed by j. Once i and j are assigned the other
n − 3 positions can be sorted anyhow, thus {n − 2} × {n − 3}! = {n − 2}!. The
first addend of the coefficient of ci j is (n − 2)!zi j .

– By symmetry, in half of the {n − 2}! permutations having arc (i, j) k is visited
before t and in half of the permutations t is visited after k for k, t ∈ V−{1, i, j},
k �= t. The second addend of the coefficient of ci j is

∑

k,t∈V−{i, j,1}:k<t

(n − 2)!
2

(zkt + ztk)

– By symmetry, in half of the {n− 2}! permutations having arc (i, j), k is visited
before i and in half of the permutations k is visited after i for k ∈ V −{1, i, j}.
Analogously, for the number of times that k is visited before and after j . The
third addend of the coefficient of ci j is

∑

k∈V :k �=i, j,1

(n − 2)!
2

(zki + zik + z jk + zk j ).

• j ∈ V \{1}. c1 j is added to the objective function when the arc (1, j) belongs to
the cyclic sequence and any of the sets { j, k} for k ∈ V − {1, j} or {k, t}, {t, k}
for k, t ∈ V − {1, j}, k �= t incur in disorder. It is similar to the case for ci j with
i > 1 but with two differences: (i) Since 1 is always the first node, the set {1, j}
never incurs itself in disorder; (ii) the number of permutations among those with
the arc (1, j) such that k ∈ V − {1, j} is visited before j is zero. Therefore, we
need to compute the number of permutations to which the arc (1, j) belongs and
how many among them visit k before t and viceversa with k, t ∈ V − {1, i, j},
k �= t. It is easy to observe that the number of permutations with the arc (1, j) is
(n − 2)! and that half of them visit k before t.

• c j1 for j > 1. Analogous to the previous case.

�	
Applying Proposition 1, we can formulate the RAPC as:
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(RAPC) min (2)

s.t. zi j + z ji = 1 ∀i, j ∈ V : i < j (3)

z ji + zk j + zik ≥ 1 ∀i, j, k ∈ V : i �= j, j �= k, i �= k (4)

z j1 = 1 ∀ j ∈ V − {1} (5)

zi j ∈ {0, 1} ∀i, j ∈ V : i �= j (6)

Constraint (3) translates the fact that any element i is ranked before or after j
but both cases cannot occur simultaneously. It implies that both values z ji = 0 and
zi j = 1 represent that element j is ranked before element i . Constraint (4) describes
the transitive relationship between the position of three elements in the permutation.
The message is that if j goes after k and k goes after i , (i.e., zk j = zik = 0) then j
must go after i , i.e., z ji = 1. Any solution of the system (3), (4), (6) is a permutation of
the elements in V : all the nodes are relatively sorted and transitivity holds. (5) forces
node 1 to be the first node of any cyclic sequence. Indeed, the set of constraints (3),
(4), (6) is the set of constraints for the RAP in the literature [1,9].

Since any solution of the RAPC satisfies (3), we can simplify the objective function.
In particular, it reduces to the following expression:

(n − 2)!
⎛

⎝
∑

i, j∈V−{1}:i �= j

ci j

⎛

⎝zi j +
∑

k,t∈V−{i, j,1}:k<t

0.5 +
∑

k∈V :k �=i, j,1

1

⎞

⎠

+
∑

j∈V−{1}
c1 j

⎛

⎝
∑

k∈V−{1, j}
z jk +

∑

k,t∈V−{ j,1}:k<t

0.5

⎞

⎠

+
∑

j∈V−{1}
c j1

⎛

⎝
∑

k∈V−{1, j}
zk j +

∑

k,t∈V−{ j,1}:k<t

0.5

⎞

⎠

⎞

⎠

Ignoring the factor (n−2)! and the constant, those cyclic sequenceswhichminimize
the above expression are the same cyclic sequences which minimize

(RAPC∗) min
∑

i, j∈V−{1}: j �=i

(ci j + c1i + c j1)zi j . (7)

s.t. (3), (4), (5), (6)

Therefore, it is sufficient to consider the objective function given in (7) to obtain
the optimal solution of the RAPC.

In order to recover the optimal value of the RAPC, (1), the constant and the factor
should also be computed:

v∗(RAPC) = (n − 2)!
2

(
2 v∗(RAPC∗)
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+
((

n − 3

2

)

+ 2(n − 3)

) ∑

i, j∈V−{1}:i �= j

ci j +
(
n − 2

2

) ∑

j∈V−{1}
(c j1 + c1 j )

⎞

⎠

(8)

where v∗(RAPC∗) is the optimal value of (7).
Even if RAPC is strongly similar to LOP, one of the contributions of this paper is to

prove that the optimal value of RAPC is exactly given by (8). Moreover, since solving
the RAPC implies solving the LOP, the RAPC is NP-hard.

3 The permutated asymmetric traveling salesman problem

Let us consider the situation in which the optimal tour given when solving the
Asymmetric Traveling Salesman Problem (ATSP) needs to be modified because of
unexpected events. We allow the ATSP to admit a source of uncertainty and we wish
to hedge against it assuming a robust alternative criterion. If our aim is that tours with
large disagreements are less likely to occur than tours with small disagreements we
can define accordingly a probability that a tour occurs as

p(ρ, r) = B(n − 1) − d(ρ, r)

A(n − 1)
∀ρ, r ∈ R

whereA(n) is the total number of disagreements in all the permutations of n and B(n)

is the maximum number of disagreements that may occur from any permutation pair
of n elements and both values are known to be

A(n) = n!n(n − 1)/4, B(n) = n(n − 1)/2.

All the above defined probabilities are non-negative because B(n) is the maximum
number of possible disagreements, and the addition of any row of the probability
matrix is 1:

∑

r∈R

p(ρ, r) =
∑

r∈R

B(n − 1)

A(n − 1)
−

∑

r∈R

d(ρ, r)

A(n − 1)
= (n − 1)!B(n − 1)

A(n − 1)
− 1 = 1

In our example, probabilities are those in Table 2, which follow from applying
formula (3 − δi j )/9 to disagreements in Table 1.

Now, we can define the Permutated Asymmetric Salesman Problem as the problem
of finding the optimal tour ρ in R for the following aggregation function:

(ρATSP) argmin
ρ

∑
r∈R C(r)p(ρ, r). (9)
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Table 2 Probability matrix;
columns are the potential tours
which start at 1 and rows are all
the possible permutations

1234 1243 1324 1342 1423 1432

ρ1 = 1234 3/9 2/9 2/9 1/9 1/9 0

ρ2 = 1243 2/9 3/9 1/9 0 2/9 1/9

ρ3 = 1324 2/9 1/9 3/9 2/9 0 1/9

ρ4 = 1342 1/9 0 2/9 3/9 1/9 2/9

ρ5 = 1423 1/9 2/9 0 1/9 3/9 2/9

ρ6 = 1432 0 1/9 1/9 2/9 2/9 3/9

Table 3 Left: asymmetric cost matrix, right: route costs and expected tour costs

⎛
⎜⎜⎝

0 1 3 1
2 0 2 3
1 1 0 1
1 3 1 0

⎞
⎟⎟⎠

Route 1234 1243 1324 1342 1423 1432
C(·) 5 6 8 9 7 5

Cw(·) 6.56 6.11 7 7.22 6.33 6.78

According to the definition of the probabilities, ρATSP is equivalent to RAPC,
changing maximization by minimization in the definition of the problems.

(RAPCmax ) argmax
ρ

∑
r∈R C(r)d(ρ, r) (10)

In fact, if we denote by v∗(ρAT SP) the optimal objective value of ρATSP,
v∗(ρAT SP) = 2

∑
r∈R C(r)/(n − 1)! − v∗(RAPCmax )/A(n − 1).

Table 3 shows the objective value of ATSP and ρATSP for all the possible tours
for the given cost matrix. In our example, v∗(ρAT SP) = 6.11,

∑
r∈R C(r) = 40 and

v∗(RAPCmax ) = 65.
It is easy to see that an optimal tour for RAPC is an optimal tour for RAPCmax in

the reverse direction. Given a tour r ∈ R and the tour in the reverse direction r̄ it is
always satisfied that

δrs + δr̄ s = B(n − 1). (11)

FromTable 1wecanobserve that δ1234,s+δ1432,s = 3 for all s ∈ {1234, 1243, 1324,
1342, 1423, 1432}, analogously δ1243,s + δ1342,s = 3 and δ1324,s + δ1423,s = 3 for all
s ∈ {1234, 1243, 1324, 1342, 1423, 1432}. Thus, the reverse tour to an optimal tour
for RAPCmax is an optimal tour for RAPC and viceversa. Moreover, v∗(RAPC) =
B(n − 1)

∑
r∈R C(r) − v∗(RAPCmax ) and v∗(RAPC)/A(n − 1) = v∗(ρATSP).

On the other hand, we would like to emphasize that optimal solutions to the ATSP
are not related with optimal solutions to ρATSP (see Table 3 where v∗(ATSP) = 5
and v∗(ρATSP) = 6.11). If we compute the objective value of ρATSP for the optimal
value of the ATSP it might strongly differ from the optimal value of ρATSP. In order
to illustrate this fact, we have solved some of the ATSP instances in TSPLIB [20] and
the results are shown in Table 4: v(ATSP) is the objective value in ρATSP for the
optimal solution of the ATSP and %diff stands for

123



Rank aggregation in cyclic sequences 675

Table 4 Percentage of
deviation for the 22 ATSP
instances in the TSPLIB [20]

Instance |V | %diff

ftv33 34 7.36

ftv35 36 6.50

ftv38 39 6.17

ftv44 45 5.94

ftv47 48 9.82

ftv55 56 6.39

ftv64 65 3.87

ftv70 71 4.55

ftv90 91 5.17

ftv100 101 4.61

ftv110 111 4.21

ftv120 121 4.00

ftv130 131 6.08

ftv140 141 5.93

ftv150 151 5.75

ftv160 161 6.41

ftv170 171 5.84

br17 17 0.00

ft53 53 8.41

ft70 70 3.24

p43 43 0.11

ry48p 48 1.30

%diff = 100(v(ATSP) − v∗(ρATSP))/v∗(ρATSP).

For the 22 instances presented in the table, the percentage of difference goes from
0 to 9.82 % (the 0 % corresponds to a special case in which both solutions, the one
for the ρATSP and the one for the ATSP coincide). The average difference for the
ftv instances is around 6 % and for all the instances presented in the table it is of a
4.8 %. These differences indicate that the solutions provided by the ATSP model are
not adequate as solutions to the ρATSP.

4 Relationships among the different problems

In this section we prove that we can obtain the optimal solution of the RAPC from the
optimal solution of the LOP or from the optimal solution of the ρATSP and viceversa.
Since LOP and RAPwere also proved to be equivalents in [6], we state that LOP, RAP,
RAPC and ρATSP are equivalent.

Theorem 1 LOP, RAPC and ρATSP are equivalent.
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Proof of Theorem 1 Let Ĝ = (V̂ , Â) be a completed directed graph with arc weight
wi j for each pair i, j ∈ V̂ . Let xi j be a binary variable which takes the value of 1 iff i
goes before j for all i, j ∈ V̂ . The IP formulation of the LOP [17] is:

(LOP) max
∑

(i, j)∈ Â

wi j xi j

s.t. xi j + x ji = 1 ∀i, j ∈ V̂ : i < j

xi j + x jk + xki ≤ 2 ∀i, j, k ∈ V̂ : i �= j, j �= k, i �= k

xi j ∈ {0, 1} ∀i, j ∈ V̂ : i �= j

• LOP and RAPC are equivalents:
(i) σ is an optimal permutation for the LOP in the complete graph Ĝ with nodes

V̂ = {i1, . . . , in} and weights wi j iff the tour ρ = (1, σ ) is an optimal tour for
the RAPC in the complete graph with nodes {1} ∪ V̂ and weights ci j = wi j

for all i, j ∈ V̂ and c j1 = c1 j = 0 for all j ∈ V̂ . As proved in Sect. 2, RAPC
and RAPC∗ have the same set of optimal solutions and because of definition
xi j = 1 − zi j (analogously xi j = z ji ). Then, optimal solutions for the RAPC
in the complete graph with nodes {1} ∪ V̂ and weights ci j are the solutions of
the problem

min
∑

i, j∈V̂ : j �=i

(wi j + 0 + 0)(1 − xi j )

s.t. xi j + x ji = 1 ∀i, j ∈ {1} ∪ V̂ : i < j

x ji + xk j + xik ≤ 2 ∀i, j, k ∈ {1} ∪ V̂ : i �= j, j �= k, i �= k

x1 j = 1 ∀ j ∈ V̂

xi j ∈ {0, 1} ∀i, j ∈ {1} ∪ V̂ : i �= j

which optimal routes start by 1 and are followed by optimal permutations of
the LOP in Ĝ.

(ii) ρ = (1, σ ) is an optimal solution for the RAPC in the complete graph Ĝ with
nodes V̂ = {1, . . . , n} and weights ci j iff σ is an optimal solution for the LOP
in the complete graph with nodes {2, . . . , n} and weightswi j = ci j +c1 j +ci1
for all i, j ∈ {2, . . . , n}. Replacing xi j by 1− zi j and the weights by its value,
the LOP is

max
∑

(i, j)∈{2,...,n}:i �= j

(ci j + c1 j + ci1)(1 − zi j )

s.t. zi j + z ji = 1 ∀i, j ∈ {2, . . . , n} : i < j

zi j + z jk + zki ≥ 1 ∀i, j, k ∈ {2, . . . , n} : i �= j, j �= k, i �= k

zi j ∈ {0, 1} ∀i, j ∈ {2, . . . , n} : i �= j.
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Rank aggregation in cyclic sequences 677

Since z j1 is not in the objective function, we can add z j1 = 1 to the set of
constraints and also extend the rest of constraints to V̂ : z j1 + z1 j = 1+0 = 1
and z1 j + z jk + zk1 = 1 + z jk ≥ 1 for all j, k ∈ {2, . . . , n} : j �= k. Which
gives the optimal solutions of the RAP in Ĝ.

• RAPC and ρATSP are equivalent:From the discussion in Sect. 3, the optimal
solution ρ∗ of ρATSP is the same cyclic sequence as the optimal solution of
RAPC but in the reverse direction:

ρ∗ = argmin
ρ

∑

r∈R

C(r)p(ρ, r) = argmin
ρ

∑

r∈R

C(r)
B(n − 1) − d(ρ, r)

A(n − 1)

= argmin
ρ

∑

r∈R

C(r)
d(ρ̄, r)

A(n − 1)
= argmin

ρ

∑

r∈R

C(r)d(ρ̄, r)

= argmin
ρ̄

∑

r∈R

C(r)d(ρ, r).

The third equality follows from Eq. (11). �	
Theorem 1 implies that the RAPC and the ρATSP inherit all the properties of the

LOP. For instance, for symmetric weight matrices all the solutions are optimal, among
many others.

Since RAP is equivalent to LOP (see [6]), the following Corollary holds.

Corollary 1 LOP, RAP, RAPC and ρATSP are equivalents.

From Corollary 1 it follows that we have introduced two new applications of the
LOP devoted to aggregation of preferences and robustness of cyclic sequences.

One consequence of Theorem 1 and Corollary 1 is that the set of constraints (3),
(4), (6) are appropriate for formulating the new problems RAPC and ρATSP because
they represent a good formulation for the LOP. From the polyhedral analysis of the
LOP in the literature follows that: (3) is a minimal equation system [13], (4) is a facet
[13] and there are other facets [5,13,16] that can be considerer in a branch and cut
algorithm.
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